Contents
Practice Problem on Z-transform computation
Compute the compute the z-transform (including the ROC) of the following DT signal:
$ x[n]= n^2 \left( u[n+3]- u[n-1] \right) $
(Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
Andrei Henrique Patriota Campos
$ x[n] = n^2 (u[n+2]-u[n-1]) $.
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
$ = \sum_{n=-3}^{0} n^2 z^{-n} $
$ = 9 z^3 + 4 z^2 + z $
$ = z^3 (9 + 4 z^{-1} + z^{-2}) $
$ =X(z) = (9 + 4 z^{-1} + z^{-2})/(z^{-3}) $, for all z in complex plane.
Answer 3
Muhammad Syafeeq Safaruddin
$ x[n] = n^2(u[n+3]-u[n-1]) $
$ x[n] = n^2(\delta(n+3)+\delta(n+2)+\delta(n+1)+\delta(n)) $
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
$ X(z) = \sum_{n=-\infty}^{+\infty} n^2(\delta(n+3)+\delta(n+2)+\delta(n+1)+\delta(n)) z^{-n} $
$ X(z) = 9z^3+4z^2+z+1 $
Answer 3
Write it here.
Answer 4
Write it here.