Revision as of 09:14, 20 May 2013 by Rhea (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Examples of Parameter Estimation based on Maximum Likelihood (MLE): the binomial distribution and the poisson distribution

for ECE662: Decision Theory

Complement to Lecture 7: "Comparison of Maximum likelihood (MLE) and Bayesian Parameter Estimation"


Bernoulli Distribution

Observations: k successes in n Bernoulli trials.

$ f(x)=\left(\frac{n!}{x!\left(n-x \right)!} \right){p}^{x}{\left(1-p \right)}^{n-x} $

$ L(p)=\prod_{i=1}^{n}f({x}_{i})=\prod_{i=1}^{n}\left(\frac{n!}{{x}_{i}!\left(n-{x}_{i} \right)!} \right){p}^{{x}_{i}}{\left(1-p \right)}^{n-{x}_{i}} $

$ L(p)=\left( \prod_{i=1}^{n}\left(\frac{n!}{{x}_{i}!\left(n-{x}_{i} \right)!} \right)\right){p}^{\sum_{i=1}^{n}{x}_{i}}{\left(1-p \right)}^{n-\sum_{i=1}^{n}{x}_{i}} $

$ lnL(p)=\sum_{i=1}^{n}{x}_{i}ln(p)+\left(n-\sum_{i=1}^{n}{x}_{i} \right)ln\left(1-p \right) $

$ \frac{dlnL(p)}{dp}=\frac{1}{p}\sum_{i=1}^{n}{x}_{i}+\frac{1}{1-p}\left(n-\sum_{i=1}^{n}{x}_{i} \right)=0 $

$ \left(1-\hat{p}\right)\sum_{i=1}^{n}{x}_{i}+p\left(n-\sum_{i=1}^{n}{x}_{i} \right)=0 $

$ \hat{p}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}=\frac{k}{n} $


Poisson Distribution

Observations: $ {X}_{1}, {X}_{2}, {X}_{3}.....{X}_{n} $

$ f(x)=\frac{{\lambda}^{x}{e}^{-\lambda}}{x!} x=0, 1, 2, $...

$ L(\lambda)=\prod_{i=1}^{n}\frac{{\lambda}^{{x}_{i}}{e}^{-\lambda}}{{x}_{i}!} = {e}^{-n\lambda} \frac{{\lambda}^{\sum_{1}^{n}{x}_{i}}}{\prod_{i=1}^{n}{x}_{i}} $

$ lnL(\lambda)=-n\lambda+\sum_{1}^{n}{x}_{i}ln(\lambda)-ln\left(\prod_{i=1}^{n}{x}_{i}\right) $

$ \frac{dlnL(\lambda)}{dp}=-n+\sum_{1}^{n}{x}_{i}\frac{1}{\lambda} $

$ \hat{\lambda}=\frac{\sum_{i=1}^{n}{x}_{i}}{n} $


More examples: Exponential and Geometric Distributions

Back to Lecture 7: "Comparison of Maximum likelihood (MLE) and Bayesian Parameter Estimation"

Back to ECE662, Spring 2008, Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett