Revision as of 05:59, 18 March 2013 by Mboutin (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Practice Problem: Recover the probability mass function from the characteristic function


A discrete random variables X has a moment generating (characteristic) function $ M_X(s) $ such that

$ \ M_X(j\omega)= 3+\cos(3\omega)+ 5\sin(2\omega). $

Find the probability mass function (PMF) of X.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Write it here.

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE302 Spring 2013 Prof. Boutin

Back to ECE302

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal