Revision as of 14:46, 10 February 2013 by Mille699 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Linearity

Linear system: y[n] = 8x[n/4]

Non-linear system: y(t) = 5x^2(t) + 11

Causality

Causal system: y[n] = x[n] + x[n-4]

Non-causal system: y(t) = 3x(-t/6)

Memory

System w/ memory: y[n] = 3t^2x[n-9]

Memoryless system: y(t) = (4x(t))^2

Invertibility

Invertible system: y[n] = 2x[n+4]

Non-invertible system: y(t) = x^4(t) -5

Stability

Stable system: y[n] = x^2[n] +4x[n] -1

Non-stable system: y(t) = d^2x(t)/dt^2 + dx(t)/dt + 6x(t)

Time Invariance

Time-variant system: y[n] = 3n^2x[n] + 5

Time-invariant system: y(t) = 2x(t) + x(t-3)

Question

Determine and sketch the convolution of the following signals: x(t) = t+1 for $ 0 \le t \le 1 $ x(t) = 2-t for $ 1 < t \le 2 $ x(t) = 0 everywhere else

h(t) = $ \delta(t+2) $ + $ 2\delta(t+1) $

Solution

x(t)*h(t) = $ \int x(\tau)h(t-\tau)d\tau $ = $ \int h(\tau)x(t-\tau)d\tau $

Becomes x(t)*h(t) = x(t+2)+2x(t+1)

Sketches:

Bonus1.jpg


y(t) = t+3 for $ -2 < t \le -1 $ y(t) = t+4 for $ -1 < t \le -0 $ y(t) = 2-2t for $ 0 < t \le 1 $ y(t) = 0 everywhere else


Please place solutions and/or comments below.

Back to first bonus point opportunity, ECE301 Spring 2013

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang