Revision as of 07:30, 27 June 2012 by Mboutin (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

7.11 QE 2006 January

1 (33 points)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two joinly distributed random variables having joint pdf

$ f_{\mathbf{XY}}\left(x,y\right)=\left\{ \begin{array}{lll} 1, & & \text{ for }0\leq x\leq1\text{ and }0\leq y\leq1\\ 0, & & \text{ elsewhere. } \end{array}\right. $

(a)

Are $ \mathbf{X} $ and $ \mathbf{Y} $ statistically independent? Justify your answer.

$ f_{\mathbf{X}}\left(x\right)=\int_{-\infty}^{\infty}f_{\mathbf{XY}}\left(x,y\right)dy=\int_{0}^{1}dy=1\text{ for }0\leq x\leq1. $

$ f_{\mathbf{Y}}\left(y\right)=\int_{-\infty}^{\infty}f_{\mathbf{XY}}\left(x,y\right)dx=\int_{0}^{1}dx=1\text{ for }0\leq y\leq1. $

Since $ f_{\mathbf{XY}}\left(x,y\right)=f_{\mathbf{X}}\left(x\right)f_{\mathbf{Y}}\left(y\right) $ , $ \mathbf{X} $ and $ \mathbf{Y} $ are $ statistically independent. $

(b)

Let $ \mathbf{Z} $ be a new random variable defined as $ \mathbf{Z}=\mathbf{X}+\mathbf{Y} $ . Find the cdf of $ \mathbf{Z} $ .

$ F_{\mathbf{Z}}\left(z\right)=P\left(\left\{ \mathbf{Z}\leq z\right\} \right)=P\left(\left\{ \mathbf{X}+\mathbf{Y}\leq z\right\} \right). $

• i) if $ z<0 $ , then $ F_{\mathbf{Z}}\left(z\right)=0 $ .

• ii) if $ z\geq2 $ , then $ F_{\mathbf{Z}}\left(z\right)=1 $ .

• iii) if $ 0\leq z\leq1 $ , then $ F_{\mathbf{Z}}\left(z\right)=\iint f_{\mathbf{XY}}\left(x,y\right)dxdy=\iint1\cdot dxdy=\frac{1}{2}z^{2} $ .

• iv) if $ 1<z<2 $ , then $ F_{\mathbf{Z}}=\iint f_{\mathbf{XY}}\left(x,y\right)dxdy=\iint1\cdot dxdy=1-\frac{1}{2}\left(2-z\right)^{2} $ .

$ \therefore F_{\mathbf{Z}}\left(z\right)=\left\{ \begin{array}{lll} 0 & & ,z<0\\ \frac{1}{2}z^{2} & & ,0\leq z\leq1\\ 1-\frac{1}{2}\left(2-z\right)^{2} & & ,1<z<2\\ 1 & & ,z\geq2 \end{array}\right. $

003.png

(c)

Find the variance of $ \mathbf{Z} $ .

$ f_{\mathbf{Z}}\left(z\right)=\left\{ \begin{array}{lll} z & & ,0\leq z\leq1\\ 2-z & & ,1<z<2\\ 0 & & \text{,otherwise.} \end{array}\right. $

$ E\left[\mathbf{Z}\right]=\int_{-\infty}^{\infty}z\cdot f_{\mathbf{Z}}\left(z\right)dz=\int_{0}^{1}z^{2}dz+\int_{1}^{2}\left(2z-z^{2}\right)dz=\frac{1}{3}z^{3}\Bigl|_{0}^{1}+z^{2}-\frac{1}{3}z^{3}\Bigl|_{1}^{2}=\frac{1}{3}+3-\frac{7}{3}=1. $ $ E\left[\mathbf{Z}^{2}\right]=\int_{-\infty}^{\infty}z^{2}\cdot f_{\mathbf{Z}}\left(z\right)dz=\int_{0}^{1}z^{3}dz+\int_{1}^{2}\left(2z^{2}-z^{3}\right)dz=\frac{1}{4}z^{4}\Bigl|_{0}^{1}+\frac{2}{3}z^{3}-\frac{1}{4}z^{4}\Bigl|_{1}^{2}=\frac{1}{4}+\frac{14}{3}-\frac{15}{4}=\frac{7}{6}. $ $ Var\left[\mathbf{Z}\right]=E\left[\mathbf{Z}^{2}\right]-\left(E\left[\mathbf{Z}\right]\right)^{2}=\frac{1}{6}. $

2 (33 points)

Suppose that $ \mathbf{X} $ and $ \mathbf{N} $ are two jointly distributed random variables, with $ \mathbf{X} $ being a continuous random variable that is uniformly distributed on the interval $ \left(0,1\right) $ and $ \mathbf{N} $ being a discrete random variable taking on values $ 0,1,2,\cdots $ and having conditional probability mass function $ p_{\mathbf{N}}\left(n|\left\{ \mathbf{X}=x\right\} \right)=x^{n}\left(1-x\right),\quad n=0,1,2,\cdots $ .

(a)

Find the probability that \mathbf{N}=n .

$ f_{\mathbf{X}}\left(x\right)=\left\{ \begin{array}{lll} 1 & & ,0\leq x\leq1\\ 0 & & ,\text{otherwise.} \end{array}\right. $

$ P\left(\left\{ \mathbf{N}=n\right\} \right)=\int_{-\infty}^{\infty}p_{\mathbf{N}}\left(n|\left\{ \mathbf{X}=x\right\} \right)f_{\mathbf{X}}\left(x\right)dx=\int_{0}^{1}x^{n}\left(1-x\right)dx $

$ =\frac{1}{n+1}x^{n+1}-\frac{1}{n+2}x^{n+2}\Bigl|_{0}^{1}=\frac{1}{n+1}-\frac{1}{n+2}=\frac{1}{\left(n+1\right)\left(n+2\right)}. $

(b)

Find the conditional density of $ \mathbf{X} $ given $ \left\{ \mathbf{N}=n\right\} $ .

By using Bayes' theorem,

$ f_{\mathbf{X}}\left(x|\left\{ \mathbf{N}=n\right\} \right)=\frac{p_{\mathbf{N}}\left(n|\left\{ \mathbf{X}=x\right\} \right)f_{\mathbf{X}}\left(x\right)}{p_{\mathbf{N}}\left(n\right)}=\left\{ \begin{array}{lll} \left(n+1\right)\left(n+2\right)x^{n}\left(1-x\right) & & ,0\leq x\leq1\\ 0 & & ,\text{otherwise.} \end{array}\right. $

(c)

Find the minimum mean-square error estimator of $ \mathbf{X} $ given $ \left\{ \mathbf{N}=n\right\} $ .

$ MMSE=E\left[\mathbf{X}|\left\{ \mathbf{N}=n\right\} \right]=\int_{-\infty}^{\infty}x\cdot f_{\mathbf{X}}\left(x|\left\{ \mathbf{N}=n\right\} \right)dx=\int_{0}^{1}\left(n+1\right)\left(n+2\right)x^{n+1}\left(1-x\right)dx $$ =\left(n+1\right)\left(n+2\right)\left(\frac{1}{n+2}x^{n+2}-\frac{1}{n+3}x^{n+3}\right)\biggl|_{0}^{1}=\left(n+1\right)\left(n+2\right)\left(\frac{1}{n+2}-\frac{1}{n+3}\right) $$ =\frac{\left(n+1\right)\left(n+2\right)}{\left(n+2\right)\left(n+3\right)}=\frac{n+1}{n+3}. $

3 (34 points)

Assume that the locations of cellular telephone towers can be accurately modeled by a 2-dimensional homogeneous Poisson process for which the following two facts are know to be true:

1. The number of towers in a region of area A is a Poisson random variable with mean \lambda A , where \lambda>0 .

2. The number of towers in any two disjoint regions are statistically independent.

Assume you are located at a point we will call the origin within this 2-dimensional region, and let $ R_{\left(1\right)}<R_{\left(2\right)}<R_{\left(3\right)}<\cdots $ be the ordered distances between the origin and the towers.

(a)

Show that $ R_{\left(1\right)}^{2},R_{\left(2\right)}^{2},R_{\left(3\right)}^{2},\cdots $ are the points of a one-dimensional homogeneous Poisson process.

$ P\left(R_{\left(k+1\right)}^{2}-R_{\left(k\right)}^{2}>r\right)=P\left(\text{there is no tower in area }\pi r\right)=\frac{\left(\lambda\pi r\right)^{0}}{0!}e^{-\lambda\pi r}=e^{-\lambda\pi r}. $

$ P\left(R_{\left(k+1\right)}^{2}-R_{\left(k\right)}^{2}\leq r\right)=P\left(\left\{ \text{there is at least one tower in area }\pi r\right\} \right) $$ =1-e^{-\lambda\pi r}\text{: CDF of exponential random variable}. $

ref. You can see the expressions about exponentail distribution [CS1ExponentialDistribution].

$ R_{\left(k+1\right)}^{2}-R_{\left(k\right)}^{2} $ is an exponential random variable with parameter $ \lambda\pi $ .

$ \therefore R_{\left(1\right)}^{2},R_{\left(2\right)}^{2},R_{\left(3\right)}^{2},\cdots $ are the points of a one-dimensional homogeneous Poisson process.

(b)

What is the rate of the Poisson process in part (a)? $ \lambda\pi $ .

cf. The mean value for the exponential random variable is $ \frac{1}{\lambda\pi} $ .

(c)

Determine the density function of $ R_{\left(k\right)} $ , the distance to the $ k $ -th nearest cell tower.

$ F_{k}\left(x\right)\triangleq P\left(R_{\left(k\right)}\leq x\right) $$ =P\left(\text{There are at least }k\text{ towers within the distance between origin and }x\right) $$ =P\left(N\left(0,x\right)\geq k\right)=1-P\left(N\left(0,x\right)\leq k-1\right)=1-\sum_{j=0}^{k-1}\frac{\left(\lambda\pi x^{2}\right)^{j}}{j!}e^{-\lambda\pi x^{2}}. $

$ f_{k}\left(x\right)=\frac{dF_{k}\left(x\right)}{dx}=-\sum_{j=0}^{k-1}\left\{ \frac{j\left(\lambda\pi x^{2}\right)^{j-1}\left(2\lambda\pi x\right)}{j!}e^{-\lambda\pi x^{2}}+\frac{\left(\lambda\pi x^{2}\right)^{j}}{j!}e^{-\lambda\pi x^{2}}\left(-2\lambda\pi x\right)\right\} $$ =\left(2\lambda\pi x\right)e^{-\lambda\pi x^{2}}\cdot\left\{ -\sum_{j=1}^{k-1}\frac{\left(\lambda\pi x^{2}\right)^{j-1}}{\left(j-1\right)!}e^{-\lambda\pi x^{2}}+\sum_{j=0}^{k-1}\frac{\left(\lambda\pi x^{2}\right)^{j}}{j!}\right\} $$ =\left(2\lambda\pi x\right)e^{-\lambda\pi x^{2}}\cdot\left\{ -\sum_{j=0}^{k-2}\frac{\left(\lambda\pi x^{2}\right)^{j}}{j!}+\sum_{j=0}^{k-1}\frac{\left(\lambda\pi x^{2}\right)^{j}}{j!}\right\} $$ =\left(2\lambda\pi x\right)e^{-\lambda\pi x^{2}}\cdot\frac{\left(\lambda\pi x^{2}\right)^{k-1}}{\left(k-1\right)!}. $


Back to ECE600

Back to my ECE 600 QE page

Back to the general ECE PHD QE page (for problem discussion)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood