Revision as of 16:32, 21 June 2012 by Hu45 (Talk | contribs)

ECE QE AC-3 August 2011 Solusion

1. (20 pts) Consider the optimization problem,

                  maximize   $ -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

                  subject to   $ x_{1}\geq0, x_{2}\geq0 $

(i) Characterize feasible directions at the point  $ x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $
Solusion 1:

We need to find a direction $ d $, such that $ \exists\alpha_{0}>0, $

Solusion 2:

$ d\in\Re_{2}, d\neq0 $ is a feasible direction at  x * , if  $ \exists\alpha_{0} $  that  $ \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega $  for all $ 0\leq\alpha\leq\alpha_{0} $

 $ \because \left{x\in\Omega: x_{1}\geq0, x_{2}\geq0\right} $

$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0 $

(ii) Write down the second-order necessary condition for . Does the point satisfy this condition?

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics