Revision as of 16:16, 21 June 2012 by Hu45 (Talk | contribs)

ECE QE AC-3 August 2011

1. (20 pts) Consider the optimization problem,

                  maximize   $ -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

                  subject to   $ x_{1}\geq0, x_{2}\geq0 $

(i) Characterize feasible directions at the point  $ x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $

d is a feasible direction at $ x^{*}(d\in\Re_{2}, d\neq0) $, if  $ \exists\alpha_{0} $  that  $ \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \in\Omega \right] $  for all $ 0\leq\alpha\leq\alpha_{0} $

 


(ii) Write down the second-order necessary condition for . Does the point satisfy this condition?

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman