Revision as of 05:59, 24 April 2012 by Lrprice (Talk | contribs)

This Collective table of formulas is proudly sponsored
by the Nice Guys of Eta Kappa Nu.

Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each!

                                         HKNlogo.jpg


Continuous-Space (2D) Fourier Transform (CSFT): definition and inverse transform
Forward transform $ \mathcal{F}(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux+vy)} dxdy } $ (info)
Inverse transform $ f(x,y) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{F(u,v)e^{j2\pi(ux+vy)} dudv } $
2D Continuous Space Fourier Transform(CSFT) Properties
$ \displaystyle f(x,y) $ $ \longrightarrow $ $ \displaystyle F(u,v) $
Linearity $ \displaystyle af_1(x,y)+bf_2(x,y) $ $ \displaystyle aF_1(u,v)+bF_2(u,v) $
Scaling $ f(\frac{x}{a},\frac{y}{b}) $ $ \displaystyle|ab|F(au,bv) $
Shifting $ \displaystyle f(x-x_o,y-y_o) $ $ \displaystyle F(u,v)e^{-j2\pi(ux_o+vy_o)} $
Modulation $ \displaystyle f(x,y)e^{j2\pi(xu_o+yv_o)} $ $ \displaystyle F(u-u_o,v-v_o) $
Reciprocity $ \displaystyle F(x,y) $ $ \displaystyle f(-u,-v) $
Other Properties
Parseval’s relation $ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|f(x,y)|^2dxdy }=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|F(u,v)|^2dudv } $
Initial Value $ F(0,0)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)dxdy } $
Symmetry Properties for Continuous Space Fourier Transform
If f(x,y) is real, the magnitued of F(u,v) is an even function; the angle of F(u,v) is an odd function.
$ \displaystyle F(u,v)=A(u,v)e^{j\theta(u,v)} $
$ \displaystyle F(u,v)=F^{*}(-u,-v) $
$ \displaystyle A(u,v)=A(-u,-v) $
$ \displaystyle \theta(u,v)=-\theta(-u,-v) $
$ f(x,y)=2 \int_0 ^{\infty}\int_{-\infty}^{\infty}{ A(u,v)cos[2 \pi(ux+vy)+ \theta(u,v)] dudv} $
Separability
$ \displaystyle g(x) $ $ \longrightarrow $ $ \displaystyle G(u) $
$ \displaystyle h(x) $ $ \longrightarrow $ $ \displaystyle H(v) $
$ \displaystyle f(x,y) $ $ \longrightarrow $ $ \displaystyle F(u,v) $
$ \displaystyle f(x,y)=g(x)h(y) $ $ \longrightarrow $ $ \displaystyle F(u,v)=G(u)H(v) $
For example,
$ \displaystyle rect(x,y)=rect(x)rect(y) $ $ \longrightarrow $ $ \displaystyle sinc(u)sinc(v)=sinc(u,v) $
  • Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot, keep the top view as a base, making the height as 1. The plot is a cube. Similar as sinc(u,v).
$ \displaystyle circ(x,y) $ $ \longrightarrow $ $ \displaystyle jinc(u,v) $
  • Notes: if we are trying to draw circ(x,y) from a top view, it will look like a circle with a radius of ½. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cylinder.
Important Continuous Space Fourier Transform Pairs
$ \displaystyle x(t) $ $ \longrightarrow $ $ \mathcal{X}(f) $
$ \displaystyle \delta (x,y) $ $ \displaystyle 1 $
$ \displaystyle 1 $ $ \displaystyle \delta (u,v) $
$ \displaystyle rect(x) $ $ \displaystyle sinc(u) \delta (v) $
$ \displaystyle \delta (x) $ $ \displaystyle \delta (v) $
$ e^{j2\pi(u_ox+v_oy)} $ $ \displaystyle \delta (u-u_o,v-v_o) $
$ \displaystyle cos[2\pi(u_ox+v_oy)] $ $ \frac{1}{2} [\delta (u-u_o,v-v_o)+\delta (u+u_o,v+v_o)] $
2D Continuous Space Fourier Transform in Polar Form
$ \displaystyle x=r \cos (\theta) $ $ \longrightarrow $ $ \displaystyle u= \rho \cos (\phi) $
$ \displaystyle y=r \sin (\theta) $ $ \longrightarrow $ $ \displaystyle v= \rho \sin (\phi) $
Forward transform $ F(\rho,\phi)=\int_0 ^{2\pi}\int_0 ^{\infty}{f(r,\theta)e^{-j2\pi\rho r cos(\phi -\theta)}r dr d \theta } $
Inverse transform $ f(r,\theta)=\int_0 ^{2\pi}\int_0 ^{\infty}{F(\rho,\phi)e^{j2\pi\rho r cos(\phi -\theta)}\rho d \rho d \phi } $


some properties related to the polar representations
Rotation $ \displaystyle f(r,\theta +\alpha ) $ $ \displaystyle F(\rho ,\phi + \alpha) $
Circular Symmetry $ \displaystyle f(r,\theta)=f_o(r) $ $ \displaystyle F(\rho , \phi)=F_o(\rho) $
Circular Symmetry $ \displaystyle f(r,\theta)=f_o(r) $ $ \displaystyle F(\rho , \phi)=F_o(\rho) $
Convolution Theorem $ \displaystyle f_1(x,y) \circledast f_2(x,y) $ $ \displaystyle F_1(u,v)F_2(u,v) $
Product Theorem $ \displaystyle f_1(x,y)f_2(x,y) $ $ \displaystyle F_1(u,v) \circledast F_2(u,v) $



Go to Relevant Course Page: ECE 438

Go to Relevant Course Page: ECE 637

Back to Collective Table of Formulas

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal