Revision as of 15:32, 14 December 2011 by Jcmccorm (Talk | contribs)

Linear Transformations and Isomorphisms

Vector Transformations:

A vector transformation is a function that is performed on a vector. (i.e. f:X->Y)

$ f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_n\end{array}\right) $

$ Where X \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) and Y \left(\begin{array}{c}y_1\\x_y\\.\\.\\x_y\end{array}\right $


Linear Transformations:

A function L:V->W is a linear transformation of V to W if the following are true:

(1) L(u+v) = L(u) + L(v) (2) L(c*u) = c*L(u)

In other words, a linear transformation is a vector transformation that also meets (1) and (2).




$ \left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang