Revision as of 12:25, 2 December 2011 by Mboutin (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Discrete Fourier Transform

Definition: let x[n] be a discrete-time signal with Period N. Then the Discrete Fourier Transform X[k] of x[n] is the discrete-time signal defined by

$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-J.2pi.kn/N}. $

Conversely, the Inverse Discrete Fourier transform is

$ x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{J.2pi.kn/N} $


Some pages discussing or using Discrete Fourier Transform

Click here to view all the pages in the discrete Fourier transform category.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood