Revision as of 09:23, 11 November 2011 by Mboutin (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Practice Question on Computing the Output of an LTI system by Convolution

The unit impulse response h(t) of a CT LTI system is

$ h(t) = e^{-t} u(t+3). \ $

Use convolution to compute the system's response to the input

$ x(t)=u(t). \ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ y(t)=x(t)*h(t)=\int_{-\infty}^{\infty} u(t)e^{\tau-t}u(t-\tau+3) d\tau $

but

$ u(\tau)= \begin{cases} 1, & \mbox{if }\tau \ge 0 \\ 0, & \mbox{if }\tau < 0 \end{cases} $

so

$ y(t)=\int_{0}^{\infty} e^{-t} e^{\tau}u(t-\tau+3) d\tau=e^{-t} \int_{0}^{\infty} e^{\tau}u(t-\tau+3) d\tau $

but

$ u(t-\tau+3)= \begin{cases} 1, & \mbox{if }(t-\tau+3) \ge 0 \\ 0, & \mbox{if }(t-\tau+3) < 0 \end{cases} = \begin{cases} 1, & \mbox{if }\tau \le t+3 \\ 0, & \mbox{if }\tau > t+3 \end{cases} $

so

$ y(t)=\begin{cases} e^{-t} \int_{0}^{t+3} e^{\tau}d\tau, & \mbox{if }t > -3 \\ 0, & \mbox{if }t \le -3 \end{cases} = e^{-t}(e^{t+3}-1)u(t+3) $


$ y(t)=(e^3-e^{-t})u(t+3)\, $

--Cmcmican 19:56, 28 January 2011 (UTC)

TA's comments: Excellent!
--Ahmadi 22:59, 29 January 2011 (UTC)
Instructor's comments: The above answer shows a lot of detail, as I did when presenting the class example. However, once you are comfortable with all the steps, it is ok to skip a few details. In particular, the following answer would get full credit on the exam.
$ \begin{align} y(t)&=x(t)*h(t),\\ & =\int_{-\infty}^{\infty} u(t)e^{\tau-t}u(t-\tau+3) d\tau,\\ & =\int_{0}^{\infty} e^{-t} e^{\tau}u(t-\tau+3) d\tau,\\ & =e^{-t} \int_{0}^{\infty} e^{\tau}u(t-\tau+3) d\tau, \\ &=\begin{cases} e^{-t} \int_{0}^{t+3} e^{\tau}d\tau, & \mbox{if }t > -3 \\ 0, & \mbox{if }t \le -3 \end{cases}, \\ &= e^{-t}(e^{t+3}-1)u(t+3). \end{align} $

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang