Introduction
I, and I assume other students, often find learning experience enhanced when the context of the study, i.e. origin and the application, clearly visible. (e.g. Students like psychology class - it's about themselves) And it is with this intent of identifying the context of linear algebra I sought to compile articles and notes for the project.
Perhaps I should define what linear algebra is.
I set forth to identify an individual responsible for the invention of linear algebra, a progenitor of the principles of linear algebra as Newton was to Calculus (or was he?). I no longer think of doing so. Theorems and rules are attributed to single/group of mathematicians; linear algebra, I think, cannot. Rather, linear algebra appears to be a fundamental faculty in mathematics, and as I lend Professor Uli's words, "Linear algebra to mathematician is what addition and multiplication is to non-mathematicians." Perhaps as one cannot find a sole author of a particular language, one cannot find one for linear algebra.
Unfortunately, I use the term linear algebra and mathematics indiscriminately- probably because I do not understand both well.
In adolescence, I hated life and was continually on the verge of suicide, from which, however, I was restrained by the desire to know more mathematics.