Revision as of 08:09, 10 September 2011 by Liu85 (Talk | contribs)

Properties of the Z-transform

Prove the following scaling property of the z-transform:

$ z_0^2 x[n] \rightarrow X \left( \frac{z}{z_0}\right) $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

I think there is a mistake, it should be $ z_0^n $ instead of $ z_0^2 $.

proof:

$ x'[n]=z_0^n x[n] $

$ Z[x'[n]]=\sum_{n=-\infty}^{\infty}x'[n]z^{-n}=\sum_{n=-\infty}^{\infty}z_0^n x[n]z^{-n}=\sum_{n=-\infty}^{\infty}x[n](\frac{z}{z_0})^{-n} $

$ let k=\frac{z}{z_0} $

$ Z[z_0^n x[n]]=\sum_{n=-\infty}^{\infty}x[n]k^{-n}=X(k)=X(\frac{z}{z_0}) $

Answer 2

Write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett