Contents
Practice Question on Computing the inverse z-transform
Compute the inverse z-transform of the following signal.
$ X(z)=\frac{1}{1+3z} \mbox{, } \Big|z\Big|<\frac{1}{3} $
Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here. --Cmcmican 22:17, 16 April 2011 (UTC)
Answer 1
$ X(z)=\sum_{k=0}^\infty (-3z)^k=\sum_{k=-\infty}^\infty u[k](-3)^kz^k $
let n=-k
$ =\sum_{n=-\infty}^\infty u[-n](-3)^{-n} z^{-n} $
$ X(z)=\frac{1}{1-z} \mbox{, ROC: }\Big|z\Big|<1 $
--Cmcmican 22:17, 16 April 2011 (UTC)
Answer 2
Write it here.
Answer 3
Write it here.