CT Fourier Transform Pairs and Properties (frequency ω in radians per time unit) (info) | |
---|---|
Definition CT Fourier Transform and its Inverse | |
(info) CT Fourier Transform | $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt $ |
(info) Inverse DT Fourier Transform | $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\, $ |
CT Fourier Transform Pairs | |||||||
---|---|---|---|---|---|---|---|
|
1x(t) | $ \longrightarrow $ | $ \mathcal{X}(\omega) $ | ||||
1 | CTFT of a unit impulse | $ \delta (t)\ $ | 1 |
||||
2 | CTFT of a shifted unit impulse | $ \delta (t-t_0)\ $ | $ e^{-iwt_0} $ | ||||
3 | CTFT of a complex exponential | $ e^{iw_0t} $ | $ 2\pi \delta (\omega - \omega_0) \ $ | ||||
4 | $ e^{-at}u(t),\ $ $ a\in {\mathbb R}, a>0 $ | $ \frac{1}{a+i\omega} $ | |||||
5 | $ te^{-at}u(t),\ $ $ a\in {\mathbb R}, a>0 $ | $ \left( \frac{1}{a+i\omega}\right)^2 $ | |||||
6 | CTFT of a cosine | $ \cos(\omega_0 t) \ $ | $ \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ $ | ||||
7 | CTFT of a sine | $ sin(\omega_0 t) \ $ | $ \frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] $ | ||||
8 | CTFT of a rect | $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ | $ \frac{2 \sin \left( T \omega \right)}{\omega} \ $ | ||||
9 | CTFT of a sinc | $ \frac{2 \sin \left( W t \right)}{\pi t } \ $ | $ \left\{\begin{array}{ll}1, & \text{ if }|\omega| <W,\\ 0, & \text{else.}\end{array} \right. \ $ | ||||
10 | CTFT of a periodic function | $ \sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $ | $ 2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) \ $ | ||||
11 | CTFT of an impulse train | $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ | $ \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T}) \ $ | ||||
12 | 1
|
$ 2\pi\delta(\omega) $ |
CT Fourier Transform Properties | |||||||
---|---|---|---|---|---|---|---|
x(t) | $ \longrightarrow $ | $ \mathcal{X}(\omega) $ | |||||
(info) multiplication property | $ x(t)y(t) \ $ | $ \frac{1}{2\pi} \mathcal{X}(\omega)*\mathcal{Y}(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{X}(\theta)\mathcal{Y}(\omega-\theta)d\theta $ | |||||
convolution property | $ x(t)*y(t) \! $ | $ \mathcal{X}(\omega)\mathcal{Y}(\omega) \! $ | |||||
time reversal | $ \ x(-t) $ | $ \ \mathcal{X}(-\omega) $ | |||||
Lin |
Other CT Fourier Transform Properties | |
---|---|
Parseval's relation | $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(w)|^2 dw $ |
Sources: