Revision as of 04:36, 1 April 2011 by Xiao1 (Talk | contribs)

Should question 3 be

Let x(t) be a continuous-time signal with $ \left| {\mathcal X} (\omega)\right| =0 $ for $ \left| \omega\right| > \omega_s $. Can one recover the signal x(t) from the signal $ y(t)=x(t) p(t-3) $, where

$ p(t)= \sum_{k=-\infty}^\infty \delta (t- \frac{2\pi}{\omega_s} k) ? $


instead of this?


Let x(t) be a continuous-time signal with $ \left| {\mathcal X} (\omega)\right| =0 $ for $ \left| \omega)\right| > \omega_m $. Can one recover the signal x(t) from the signal $ y(t)=x(t) p(t-3) $, where

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett