Revision as of 14:46, 9 February 2011 by Cmcmican (Talk | contribs)

Practice Question on Computing the Fourier Series coefficients of a discrete-time (sampled) cosine wave

Obtain the Fourier series coefficients of the DT signal

$ x[n] = \cos \left(3\pi n + \frac{\pi}{2} \right) . \ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

for c'o's(n), the coefficients are $ a_1=\frac{1}{2},a_{-1}=\frac{1}{2}, a_k=0 \mbox{ for }k\ne 1,-1 $

Time shift property: $ x(n-n_0) \to e^{-jkw_0n_0}a_k $

Thus with $ w_0=3\pi\, $ and $ n_0=\frac{-\pi}{2} $,

$ a_1=\frac{e^{j 3 \pi \frac{\pi}{2}}}{2},a_{-1}=\frac{e^{-j 3 \pi \frac{\pi}{2}}}{2}, a_k=0 \mbox{ for }k\ne 1,-1 $

Is that right? I'm not sure about the time shift property.

--Cmcmican 21:53, 7 February 2011 (UTC)

Student Question: Since this is DT and not CT, shouldn't the focus be on N=2 and not wo? (Clarkjv 20:36, 8 February 2011 (UTC))

Student Response: Yeah, it should be. I did this before today's lecture, and made some mistakes. I'm posting a new answer in answer 2. --Cmcmican 19:46, 9 February 2011 (UTC)

Answer 2

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang