Revision as of 06:48, 18 January 2011 by Rgieseck (Talk | contribs)

Cascade a time delay and a time scaling

Consider the following two systems:

$ x(t) \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 1} & \\ & & \end{array}\right] \rightarrow y(t)=x(t+2) $

$ x(t) \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 2} & \\ & & \end{array}\right] \rightarrow y(t)=x(5t) $

Obtain a simple expression for the output of the following cascade:

$ x(t) \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 1} & \\ & & \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 2} & \\ & & \end{array}\right] \rightarrow y(t) $


(Sorry, I don't know how to make a real "box" to represent a system. If somebody knows, please help. -pm)

Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x(t) \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 1} & \\ & & \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 2} & \\ & & \end{array}\right] \rightarrow y(t) = x(5(t + 2)) = x(5t + 10) $ --Cmcmican 16:05, 15 January 2011 (UTC)

Instructors comments: Unfortunately, the answer is not correct. (I actually expected that mistake to happen. Almost everybody does it the first time.) Try to carefully write the output after each step of the cascade, and change the variable explicitely. -pm

Answer 2

$ x(t) \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 1} & \\ & & \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 2} & \\ & & \end{array}\right] \rightarrow y(t) = x(5t + {2 \over {5}}) $

--Rgieseck 11:47, 18 January 2011 (UTC)

Draw an example signal and apply the systems graphically to logically deduce this answer.


Answer 3

write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett