Revision as of 11:05, 15 January 2011 by Cmcmican (Talk | contribs)

Cascade a time delay and a time scaling

Consider the following two systems:

$ x(t) \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 1} & \\ & & \end{array}\right] \rightarrow y(t)=x(t+2) $

$ x(t) \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 2} & \\ & & \end{array}\right] \rightarrow y(t)=x(5t) $

Obtain a simple expression for the output of the following cascade:

$ x(t) \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 1} & \\ & & \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 2} & \\ & & \end{array}\right] \rightarrow y(t) $


(Sorry, I don't know how to make a real "box" to represent a system. If somebody knows, please help. -pm)

Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x(t) \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 1} & \\ & & \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{system 2} & \\ & & \end{array}\right] \rightarrow y(t) = x(5(t + 2)) = x(5t + 10) $ --Cmcmican 16:05, 15 January 2011 (UTC)

Answer 2

write it here.

Answer 3

write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood