Revision as of 16:02, 12 January 2011 by Mboutin (Talk | contribs)

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following continuous-time signal

$ x(t)= e^{2jt} $

What properties of the complex magnitude can you use to check your answer?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \begin{align} E_{\infty}&=\lim_{T\rightarrow \infty}\int_{-T}^T |e^{(2jt)}|^2 dx \\ &= \lim_{T\rightarrow \infty}\int_{-T}^T |(cos(2t) + j*sin(2t))|^2 dx \\ &= \lim_{T\rightarrow \infty}\int_{-T}^T {\sqrt{(cos(2t))^2 + (sin(2t))^2}}^2 dx\\ & = \lim_{T\rightarrow \infty}\int_{-T}^T 1 dx \\ &= \lim_{T\rightarrow \infty} t \Big| ^T _{-T}\\ &=\infty. \end{align} $

So $ E_{\infty} = \infty $.

$ \begin{align} P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |e^{(2jt)}|^2 dx \\ &= \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 1 dx \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} t \Big| ^T _{-T} \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} T - {1 \over {2T}} (-T)\\ & = \lim_{T\rightarrow \infty} {1 \over {2}} + {1 \over {2}} \\ &= 1 \end{align} $

So $ P_{\infty} = 1 $.

$ P_\infty $ is larger than 0, so $ E_\infty $ should be infinity, and it is. --Cmcmican 19:50, 12 January 2011 (UTC)

Answer 2

write it here.

Answer 3

write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach