1. Unit step
When $ x[n]=1 (n{\ge}0) $ x[n] = 0(n < 0)
$ X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}1\cdot z^{-n}=\frac{1}{1-z^{-1}} $ , ROC : |z|>1
2. Power series
x[n]=an,
$ X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}a^{n} z^{-n}=\frac{1}{1-az^{-1}} $ , ROC : |z|>a
3. Exponential funtion
x[n]=e-an,
$ X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}e^{-an} z^{-n}=\sum_{n=0}^{\infty}[e^{-a} z^{-1}]^{n}=\frac{1}{1-e^{-a}z^{-n}} $ , ROC : |z|>e-a
4. Sinusoidal function
x[n]=sinwn,
$ X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}\frac{e^{jn{\omega}} -e^{-jn{\omega}}} {2j} z^{-n} $ $ =\frac{1}{2j} (\frac{1}{1-e^{j\omega}z^{-1}}-\frac{1}{1-e^{-j\omega}z^{-1}}) $ $ =\frac{1}{2j} (\frac{-e^{-j\omega}z^{-1}+e^{j\omega}z^{-1}}{1-e^{-j\omega}z^{-1}-e^{j\omega}z^{-1}+z^{-2}}) $ $ =\frac{z^{-1}sin(\omega)}{1-2z^{-1}cos(\omega)+z^{-2}} $