Revision as of 13:58, 30 November 2010 by Chen558 (Talk | contribs)

Back to ECE438 course page


Continuous Space Fourier Transform of 2D Signals

Continuous Space Fourier Transform (2D Fourier Transform)
1D Continuous Space Fourier Transform(CSFT) definitions and its inverse transform
Continous Space Fourier Transform $ \mathcal{X}(f)=\int_{-\infty}^{\infty}x(t)e^{-j2\pi ft} dt $
Inverse Continous Space Fourier Transform $ x(t)=\int_{-\infty}^{\infty}\mathcal{X}(2\pi f)e^{j2\pi ft} df $
2D Continuous Space Fourier Transform(CSFT) definitions and its inverse transform
Forward transform $ \mathcal{F}(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux+vy)} dxdy } $
Inverse transform $ f(x,y) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{F(u,v)e^{j2\pi(ux+vy)} dudv } $
2D Continuous Space Fourier Transform(CSFT) Properties
$ \displaystyle x(t) $ $ \longrightarrow $ $ \mathcal{X}(f) $
Linearity $ \displaystyle af_1(x,y)+bf_2(x,y) $ $ \displaystyle aF_1(u,v)+bF_2(u,v) $
Scaling $ f(\frac{x}{a},\frac{y}{b}) $ $ \displaystyle|ab|F(au,bv) $
Shifting $ \displaystyle f(x-x_o,y-y_o) $ $ \displaystyle F(u,v)e^{-j2\pi(ux_o+vy_o)} $
Modulation $ \displaystyle f(x,y)e^{j2\pi(xu_o+yv_o)} $ $ \displaystyle F(u-u_o,v-v_o) $
Reciprocity $ \displaystyle F(x,y) $ $ \displaystyle f(-u,-v) $
Other Properties
Parseval’s relation $ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|f(x,y)|^2dxdy }=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|F(u,v)|^2dudv } $
Initial Value $ F(0,0)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)dxdy } $
Symmetry Properties for Continuous Space Fourier Transform
If f(x,y) is real, the magnitued of F(u,v) is an even function; the angle of F(u,v) is an odd function.
$ \displaystyle F(u,v)=A(u,v)e^{j\theta(u,v)} $
$ \displaystyle F(u,v)=F^{*}(-u,-v) $
$ \displaystyle A(u,v)=A(-u,-v) $
$ \displaystyle \theta(u,v)=-\theta(-u,-v) $
$ f(x,y)=2 \int_0 ^{\infty}\int_{-\infty}^{\infty}{ A(u,v)cos[2 \pi(ux+vy)+ \theta(u,v)] dudv} $
Separability
$ \displaystyle g(x) $ $ \longrightarrow $ $ \displaystyle G(u) $
$ \displaystyle h(x) $ $ \longrightarrow $ $ \displaystyle H(v) $
$ \displaystyle f(x,y) $ $ \longrightarrow $ $ \displaystyle F(u,v) $
$ \displaystyle f(x,y)=g(x)h(y) $ $ \longrightarrow $ $ \displaystyle F(u,v)=G(u)H(v) $
*For example,
$ \displaystyle rect(x,y)=rect(x)rect(y) $ $ \longrightarrow $ $ \displaystyle sinc(u)sinc(v)=sinc(u,v) $
  • Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot, keep the top view as a base, making the height as 1. The plot is a cube. Similar as sinc(u,v).
$ \displaystyle circ(x,y) $ $ \longrightarrow $ $ \displaystyle jinc(u,v) $
  • Notes: if we are trying to draw circ(x,y) from a top view, it will look like a circle with a radius of ½. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cylinder.


Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals. given,


Other important transform pairs:

  • $ \displaystyle \delta (x,y)---CSFT---1 $
  • $ \displaystyle 1---CSFT--- \delta (u,v) $
  • $ \displaystyle rect(x)---CSFT---sinc(u) \delta (v) $
  • $ \displaystyle \delta (x)--CSFT---\delta (v) $
  • $ e^{j2\pi(u_ox+v_oy)}---CSFT--- \delta (u-u_o,v-v_o) $
  • $ cos[2\pi(u_ox+v_oy)]---CSFT---\frac{1}{2} [\delta (u-u_o,v-v_o)+\delta (u+u_o,v+v_o)] $

In 2D, we can also change the coordianting system from rectangular to polar form,

    • 'x = rc'o's(θ)----------------u = ρc'o's(φ)
    • 'y = rs'i'n(θ)----------------v = ρs'i'n(φ)
  • Forward transform-$ F(\rho,\phi)=\int_0 ^{2\pi}\int_0 ^{\infty}{f(r,\theta)e^{-j2\pi\rho r cos(\phi -\theta)}r dr d \theta } $
  • Inverse transform-$ f(r,\theta)=\int_0 ^{2\pi}\int_0 ^{\infty}{F(\rho,\phi)e^{j2\pi\rho r cos(\phi -\theta)}\rho d \rho d \phi } $

Some properties related to the polar representations

  • Rotation $ \displaystyle f(r,\theta +\alpha )-------CSFT-------F(\rho ,\phi + \alpha) $
  • Circular Symmetry $ \displaystyle f(r,\theta)=f_o(r)---------->F(\rho , \phi)=F_o(\rho) $

Convolution Theorem

  • $ \displaystyle f_1(x,y)**f_2(x,y)---CSFT---F_1(u,v)F_2(u,v) $

Product Theorem

  • $ \displaystyle f_1(x,y)f_2(x,y)---CSFT---F_1(u,v)**F_2(u,v) $

Back to ECE438 course page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood