Revision as of 11:08, 30 November 2010 by Nelder (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Example. Two jointly distributed independent random variables

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two jointly distributed, independent random variables. The pdf of $ \mathbf{X} $ is

$ f_{\mathbf{X}}\left(x\right)=xe^{-x^{2}/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(x\right) $, and $ \mathbf{Y} $ is a Gaussian random variable with mean 0 and variance 1 . Let $ \mathbf{U} $ and $ \mathbf{V} $ be two new random variables defined as $ \mathbf{U}=\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}} $ and $ \mathbf{V}=\lambda\mathbf{Y}/\mathbf{X} $ where $ \lambda $ is a positive real number.

(a)

Find the joint pdf of $ \mathbf{U} $ and $ \mathbf{V} $ . (Direct pdf method)

$ f_{\mathbf{UV}}\left(u,v\right)=f_{\mathbf{XY}}\left(x\left(u,v\right),y\left(u,v\right)\right)\left|\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}\right| $

Solving for x and y in terms of u and v , we have $ u^{2}=x^{2}+y^{2} $ and $ v^{2}=\frac{\lambda^{2}y^{2}}{x^{2}}\Longrightarrow y^{2}=\frac{v^{2}x^{2}}{\lambda^{2}} $ .

Now, $ u^{2}=x^{2}+y^{2}=x^{2}+\frac{v^{2}x^{2}}{\lambda^{2}}=x^{2}\left(1+v^{2}/\lambda^{2}\right)\Longrightarrow x=\frac{u}{\sqrt{1+v^{2}/\lambda^{2}}}\Longrightarrow x\left(u,v\right)=\frac{u}{\sqrt{1+v^{2}/\lambda^{2}}} $ .

Thus, $ y=\frac{vx}{\lambda}=\frac{vu}{\lambda\sqrt{1+v^{2}/\lambda^{2}}}\Longrightarrow y\left(u,v\right)=\frac{vu}{\lambda\sqrt{1+v^{2}/\lambda^{2}}} $ .

Computing the Jacobian.

$ \frac{\partial\left(x,y\right)}{\partial\left(u,v\right)} =\left|\begin{array}{ll} \frac{\partial x}{\partial u} \frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u} \frac{\partial y}{\partial v} \end{array}\right|=\left|\begin{array}{cc} \frac{1}{\sqrt{1+v^{2}/\lambda^{2}}} \frac{-uv}{\lambda^{2}\left(1-v^{2}/\lambda^{2}\right)^{\frac{3}{2}}}\\ \frac{v}{\lambda\sqrt{1+v^{2}/\lambda^{2}}} \frac{u}{\lambda\sqrt{1+v^{2}/\lambda^{2}}}-\frac{uv^{2}}{\lambda^{3}\left(1+v^{2}/\lambda^{2}\right)^{\frac{3}{2}}} \end{array}\right| $$ =\frac{1}{\sqrt{1+v^{2}/\lambda^{2}}}\left[\frac{u}{\lambda\sqrt{1+v^{2}/\lambda^{2}}}-\frac{uv^{2}}{\lambda^{3}\left(1+v^{2}/\lambda^{2}\right)^{\frac{3}{2}}}\right]-\frac{-uv^{2}}{\lambda^{3}\left(1-v^{2}/\lambda^{2}\right)^{2}} $$ =\frac{u}{\lambda\left(1+v^{2}/\lambda^{2}\right)}=\frac{\lambda u}{\lambda^{2}+v^{2}}\qquad\left(\geq0\text{ because u is non-negative}\right). $

Because $ \mathbf{X} $ and $ \mathbf{Y} $ are statistically independent

$ f_{\mathbf{XY}}\left(x,y\right)=f_{\mathbf{X}}\left(x\right)f_{\mathbf{Y}}\left(y\right)=xe^{-x^{2}/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(x\right)\cdot\frac{1}{\sqrt{2\pi}}e^{-y^{2}/2}=\frac{x}{\sqrt{2\pi}}e^{-\left(x^{2}+y^{2}\right)/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(x\right). $

Substituting these quantities, we get

$ f_{\mathbf{UV}}\left(u,v\right)=f_{\mathbf{XY}}\left(x\left(u,v\right),y\left(u,v\right)\right)\left|\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}\right|=\frac{u}{\sqrt{1+v^{2}/\lambda^{2}}}\cdot\frac{1}{\sqrt{2\pi}}e^{-u^{2}/2}\cdot\frac{\lambda u}{\lambda^{2}+v^{2}}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(u\right) $$ =\frac{\lambda^{2}}{\sqrt{2\pi}}u^{2}e^{-u^{2}/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(u\right)\cdot\frac{1}{\left(\lambda^{2}+v^{2}\right)^{\frac{3}{2}}}. $

(b)

Are $ \mathbf{U} $ and $ \mathbf{V} $ statistically independent? Justify your answer.

$ \mathbf{U} $ and $ \mathbf{V} $ are statistically independent iff $ f_{\mathbf{UV}}\left(u,v\right)=f_{\mathbf{U}}\left(u\right)f_{\mathbf{V}}\left(v\right) $ .

Now from part (a), we see that $ f_{\mathbf{UV}}\left(u,v\right)=c_{1}g_{1}\left(u\right)\cdot c_{2}g_{2}\left(v\right) $ where $ g_{1}\left(u\right)=u^{2}e^{-u^{2}/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(u\right) $ and $ g_{2}\left(v\right)=\frac{1}{\left(\lambda^{2}+v^{2}\right)^{\frac{3}{2}}} $ with $ c_{1} $ and $ c_{2} $ selected such that $ f_{\mathbf{U}}\left(u\right)=c_{1}g_{1}\left(u\right) $ and $ f_{\mathbf{V}}\left(v\right)=c_{2}g_{2}\left(v\right) $ are both valid pdfs.

$ \therefore \mathbf{U} $ and $ \mathbf{V} $ are statistically independent.


Back to ECE600

Back to ECE 600 Exams

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman