Revision as of 07:15, 28 November 2010 by Sbiddand (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)



Solution to Q1 of Week 14 Quiz Pool


Using the definition of the CSFT,
$ \begin{align} F(u,v) &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j2\pi (ux+vy)}dxdy \\ F(u,0) &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j2\pi (ux)}dxdy \\ &= \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty}f(x,y) dy \right) e^{-j2\pi ux}dx \\ &= \int_{-\infty}^{\infty} p(x) e^{-j2\pi ux}dx \\ &= P(u) \\ \end{align} $

so F(u,0) is the same as P(u) which is the CTFT of the function p(x).

Credit: Prof. Bouman


Back to Lab Week 14 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett