Revision as of 14:27, 27 November 2010 by Bprenti (Talk | contribs)

The Inverse of a Matrix

In linear algebra, the study of matrices is one of the fundamental basis of this subject. One of the concepts within this study, is the notion of an invertible or nonsingular matrix.


Definition

A square matrix is said to be invertible or nonsingular, if when multiplied by another similar matrix, the result yields the identity matrix.


Let A and B be n × n matrices and In be the n × n identity matrix

A is invertible or nonsingular and B is its inverse if:


$ \begin{align} & AB=BA={{I}_{n}} \\ & \\ & \overbrace{\left( \begin{matrix} {{a}_{11}} & {{a}_{12}} & \cdots & {{a}_{1n}} \\ {{a}_{21}} & {{a}_{22}} & \cdots & {{a}_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ {{a}_{n1}} & {{a}_{n2}} & \cdots & {{a}_{nn}} \\ \end{matrix} \right)}^{A}\overbrace{\left( \begin{matrix} {{b}_{11}} & {{b}_{12}} & \cdots & {{b}_{1n}} \\ {{b}_{21}} & {{b}_{22}} & \cdots & {{b}_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ {{b}_{n1}} & {{b}_{n2}} & \cdots & {{b}_{nn}} \\ \end{matrix} \right)}^{B}=\overbrace{\left( \begin{matrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ \end{matrix} \right)}^{{{I}_{n}}} \\ \end{align} $


If the above condition is not met, and the determinant of matrix A is 0, then it is called singular or noninvertible.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva