Inequalities | |
---|---|
Triangular Inequalities | |
$ \vert a_1 \vert - \vert a_2 \vert \leqq \vert a_1 +a_2 \vert \leqq \vert a_1 \vert + \vert a_2 \vert $ | |
$ \vert a_1 + a_2 + \cdots + a_n \vert \leqq \vert a_1 \vert + \vert a_2 \vert + \cdots + \vert a_n \vert $ | |
Cauchy-schwarz Inequality | |
$ \vert a_1 b_1 + a_2b_2 + \cdots + a_nb_n \vert ^2 \leqq \left ( \vert a_1 \vert ^2 + \vert a_2 \vert ^2 + \cdots + \vert a_n \vert ^2 \right ) \left ( \vert b_1 \vert ^2 + \vert b_2 \vert ^2 + \cdots + \vert b_n \vert ^2 \right ) $ | |
$ \mbox{ The equality is valid if and only if } a_1/b_1 = a_2/b_2 = \cdots = a_n/b_n $ | |
Inequalities Involving Arithmetic, Geometric and Harmonic | |
$ \mbox{ if } A, \ G \mbox{ and } H \mbox{ are arithmatic, geometric and harmonic means of a positive numbers } a_1 , a_2 ,\cdots , a_n, \mbox{ then } $ | |
$ H \leqq G \leqq A $ | |
$ A = \frac{a_1 + a_2 + \cdots + a_n}{n} \qquad \qquad G = \sqrt[n]{a_1a_2 \cdots a_n} \qquad \qquad \frac{1}{H} = \frac{1}{n} \left ( {1 \over a_1} + {1 \over a_2 }+ \cdots +{1 \over a_n } \right ) $ | |
$ \mbox{ the equality occures only if } a_1 = a_2 =\cdots = a_n. $ | |
Holder Inequality | |
$ \vert a_1 b_1 + a_2b_2 + \cdots + a_nb_n \vert \leqq \left ( \vert a_1 \vert ^p + \vert a_2 \vert ^p + \cdots + \vert a_n \vert ^p \right ) ^{1/p} \left ( \vert b_1 \vert ^q + \vert b_2 \vert ^q + \cdots + \vert b_n \vert ^q \right ) ^{1/q} $ | |
$ {1 \over p} + {1 \over q} = 1 \qquad \qquad p > 1. q > 1 $ | |
$ \mbox{ The equality occures only if } \vert a_1 \vert ^{p-1} / \vert b_1 \vert = \vert a_2 \vert ^{p-1} / \vert b_2 \vert = \cdots =\vert a_n \vert ^{p-1} / \vert n_1 \vert . $ | |
$ \mbox{ for } p = q = 2, \mbox{ the formula reduces to Cauchy-Shwartz Inequality}. $ | |
Tchebytchev Inequality | |
$ \mbox{ if } a_1 \geqq a_2 \geqq \cdots \geqq a_n \mbox{ and } b_1 \geqq b_2 \geqq \cdots \geqq b_n \mbox{ then } $ | |
$ \left ( \frac{a_1 + a_1 + \cdots + a_n}{n} \right ) \left ( \frac{ b_1 + b_2 + \cdots +b_n}{n} \right ) \leqq \frac{a_1b_1+a_2b_2+\cdots+a_nb_n}{n} $ | |
$ (b_1 + b_2 + \cdots +b_n)(b_1 + b_2 + \cdots +b_n) \leqq n(b_1 + b_2 + \cdots +b_n) $ | |
Minkowski Inequality | |
Cauchy-schwarz Inequality for Integrals | |
Holder Inequality for Integrals | |
Minkowski Inequality for Integrals |