Revision as of 12:29, 22 November 2010 by Nelder (Talk | contribs)

2.4 Strong law of large numbers (Borel)

Let $ \left\{ \mathbf{X}_{n}\right\} $ be a sequence of identically distributed random variables with mean $ \mu $ and variance $ \sigma^{2} $ , and $ Cov\left(\mathbf{X}_{i},\mathbf{X}_{j}\right)=E\left[\left(\mathbf{X}_{i}-\mu\right)\left(\mathbf{X}_{j}-\mu\right)\right]=0,\quad i\neq j\text{ : uncorrelated.} $

Then $ \mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\longrightarrow\left(a.e.\right)\longrightarrow\mu\text{ as }n\longrightarrow\infty. $

Proof

Beyound this course. Require measure theory.


Back to ECE600

Back to Sequences of Random Variables

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch