Revision as of 12:53, 10 November 2010 by Han83 (Talk | contribs)



Solution to Question 1 of HW5




Solution to Question 2 of HW5


a)

$ x[n]=6\delta[n]+5 \delta[n-1]+4 \delta[n-2]+3 \delta[n-3]+2 \delta[n-4]+\delta[n-5]\,\! $

Using the DFT formula,

$ \begin{align} X[k] &=\sum_{n=0}^{5}\left(6\delta[n]+5 \delta[n-1]+4 \delta[n-2]+3 \delta[n-3]+2 \delta[n-4]+\delta[n-5]\right)e^{-j\frac{2\pi}{6}kn} \\ &= 6 + 5e^{-j\frac{2\pi}{6}k} + 4e^{-j\frac{2\pi}{6}2k} + 3e^{-j\frac{2\pi}{6}3k} + 2e^{-j\frac{2\pi}{6}4k} + e^{-j\frac{2\pi}{6}5k} \\ \end{align} $


b)

We use the inverse-DFT formula to obtain $ y_6[n] $

$ y_6[n]=\frac{1}{N}\sum_{k=0}^{k=5} W_6^{-2k} X[k] e^{j\frac{2\pi}{6}nk} = \frac{1}{N}\sum_{k=0}^{k=5} X[k] e^{j\frac{2\pi}{6}(n+2)k} $

If you compare this with the inverse-DFT of $ X[k] $

$ x_6[n]=\frac{1}{N}\sum_{k=0}^{k=5}X[k] e^{j\frac{2\pi}{6}nk} $

then, you will notice that $ y_6[n]=x_6[(n+2)\text{mod}6] $. Thus, it becomes

$ y_6[n]=4\delta[n]+3 \delta[n-1]+2\delta[n-2]+\delta[n-3]+6 \delta[n-4]+5\delta[n-5]\,\! $

(Producting $ W^{-2k} $ to $ X[k] $ yields circular-shifting to the left by 2 in the periodic discrete-time signal)


c)

$ h[n]=\delta[n]+\delta[n-1]+\delta[n-2]\,\! $

computing the circular convolution with $ x[n] $ and $ h[n] $,

$ \begin{align} y[n] =& x[n]\circledast_6 h[n] \\ =& \quad \{\quad 6,\quad 5,\quad 4,\quad 3,\quad 2,\quad 1\} \\ & +\! \{\quad 1,\quad 6,\quad 5,\quad 4,\quad 3,\quad 2\} \\ & +\! \{\quad 2,\quad 1,\quad 6,\quad 5,\quad 4,\quad 3\} \\ =& \quad \{\quad 9,\;\;12,\;\;\!15,\;\;12,\quad 9,\quad 6\} \\ =& 9\delta[n]+12\delta[n-1]+15\delta[n-2]+12\delta[n-3]+9\delta[n-4]+6\delta[n-5] \\ \end{align} $



d)

In order for the periodic repetition (with period N) of the usual convolution between x[n] and h[n] to be the same with the N-point circular convolution,

$ N \geq L+M-1 $ where L is the length of x[n] and M is the length of h[n].

Therefore, $ N\geq8 $.



Solution to Question 3 of HW5




Back to HW8

Back to ECE 438 Fall 2010

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang