IT SEEMS LIKE THE VARIABLES s AND t WERE INTERCHANGED BELOW.
Laplace Transform Pairs and Properties | |||
---|---|---|---|
Definition | |||
Laplace Transform | $ F(s)=\int_{-\infty}^\infty f(t) e^{-st}dt, \ s\in {\mathbb C} \ $ | ||
Inverse Laplace Transform | add formula here | ||
Properties of the Laplace Transform | |||
function $ f(t) \ $ | Laplace transform $ F(s) \ $ | ROC $ R $ | |
$ af_1(t)+bf_2(t) \ $ | $ aF_1(s)+bF_2(s) \ $ | ||
$ f\left( \frac{t}{a} \right) $ | $ aF(as) $ | ||
$ f(t-a) $ | $ e^{as}F(s) $ | ||
$ e^{-at}f(t) $ | $ u(s-a) = \begin{cases} F(s-a) & s>a \\ 0 & t<a \end{cases} $ | ???? How can a complex number be greater than a??? | |
$ sf(s)-F(0) $ | $ F'(t) $ | ||
$ s^2f(s)-sF(0)-F'(0) $ | $ F''(t) $ | ||
$ s^{n}f(s)-\sum_{k=1}^ns^{n-k}F^{(k)}(0) $ | $ F^{(n)}(t) $ | ||
$ f'(s) $ | $ -tF(t) $ | ||
$ f''(s) $ | $ t^2F(t) $ | ||
$ f^{(n)}(s) $ | $ (-1)^{(ntn)}F(t) $ | ||
$ \frac{f(s)}s $ | $ \int_{0}^{t} F(u) du $ | ||
$ \frac{f(s)}{s^n} $ | $ \int_{0}^{t}...\int_{0}^{t}F(u)du^n = \int_{0}^{t}\frac{{(t-u)}^{n-1}}{(n-1)!} F(u)du $ | ||
$ f(s)g(s) $ | $ \int_{0}^{t}F(u)G(t-u)du $ | ||
$ \int_{s}^{\infty}f(u)du $ | $ \frac{F(t)}t $ | ||
$ \frac1{1-e^{-sT}}\int_{0}^{T}e^{-su}F(u)du $ | $ F(t)=F(t+T) $ | ||
$ \frac{f(\sqrt{s})}s $ | $ \frac{1}{\sqrt{{\pi}t}}\int_{0}^{\infty}e^{-\frac{u^2}4t}F(u)du $ | ||
$ \frac1sf(\frac1s) $ | $ \int_{0}^{\infty}J_0(2\sqrt{ut})F(u)du $ | ||
$ \frac1{g^{n+1}}f(\frac1s) $ | $ t^{\frac{n}2}\int_{0}^{\infty}u^{-\frac{n}2}J_n(2\sqrt{ut})F(u)du $ | ||
$ \frac{s+\frac1s}{s^2+1} $ | $ \int_{0}^{t}J_0(2\sqrt{u(t-u)})F(u)du $ | ||
please continue | place formula here | ||
please continue | place formula here | ||
please continue | place formula here | ||
please continue | place formula here | ||
please continue | place formula here |
Laplace Transform Pairs | |||||
---|---|---|---|---|---|
notes | Signal | Laplace Transform | ROC | ||
unit impulse/Dirac delta | $ \,\!\delta(t) $ | 1 | $ \text{All}\, s \in {\mathbb C} $ | ||
unit step function | $ \,\! u(t) $ | $ \frac{1}{s} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ | ||
$ \,\! -u(-t) $ | $ \frac{1}{s} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $ | |||
$ \frac{t^{n-1}}{(n-1)!}u(t) $ | $ \frac{1}{s^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ | |||
$ -\frac{t^{n-1}}{(n-1)!}u(-t) $ | $ \frac{1}{s^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $ | |||
$ \,\!e^{-\alpha t}u(t) $ | $ \frac{1}{s+\alpha} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ | |||
$ \,\! -e^{-\alpha t}u(-t) $ | $ \frac{1}{s+\alpha} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $ | |||
$ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ | $ \frac{1}{(s+\alpha )^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ | |||
$ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ | $ \frac{1}{(s+\alpha )^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $ | |||
$ \,\!\delta (t - T) $ | $ \,\! e^{-sT} $ | $ \text{All}\,\, s\in {\mathbb C} $ | |||
$ \,\cos( \omega_0 t)u(t) $ | $ \frac{s}{s^2+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ | |||
$ \, \sin( \omega_0 t)u(t) $ | $ \frac{\omega_0}{s^2+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ | |||
$ \,e^{-\alpha t}\cos( \omega_0 t) u(t) $ | $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ | |||
$ \, e^{-\alpha t}\sin( \omega_0 t)u(t) $ | $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ | |||
$ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ | $ \,\!s^{n} $ | $ All\,\, s $ | |||
$ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ | $ \frac{1}{s^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ |