Revision as of 13:17, 18 October 2010 by Severett (Talk | contribs)

Homework 8 Collaboration Area

Question on problem 15 in Sec 6.6.

I tried to obtain the expression for

s/(s + 1) * 1/(s+1)

but am not getting the correct result in the Laplace table of

t sin t.

I am using the convolution of cos(tau)*sin(t-tau). There is no t term in sight. Is it okay to read off the table? Even if it is, shouldn't the result be the same?

Answer:

To find the inverse Laplace transform of

s/(s + 1) * 1/(s+1)

you'll need to compute the convolution integral:

$ \int_0^t \cos(\tau)\sin(t-\tau)\ d\tau. $

You'll have to use a formula for the sine of the difference of two angles and be very careful. Remember, t acts like a constant in the integrals.

There is only one correct answer, so you should get it that way. (If it looks different than the back of the book, a trig identity might be at fault.)

    • Another way to solve this problem is to recognize that the given expression is the derivative of 1 / [(s+2)^2 + 1]].....therefore greatly simplifying the solution.

Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010