Revision as of 08:20, 8 October 2010 by Mboutin (Talk | contribs)

Homework 6, ECE438, Fall 2010, Prof. Boutin

Due in class, Friday October 15, 2010.

The discussion page for this homework is here. Feel free to share your answers/thoughts/questions on that page.


Question 1

Consider the signal

$ x[n]=\cos \left( \omega_1 n \right)+ k \cos \left( \omega_2 n \right) $

where k is a real-valued constant.

a) Write a program that will

  1. Plot x[n].
  2. Compute the N point DFT X[k]. (Yes, you may use FFT routines.)
  3. Plot the magnitude of X[k].

Turn in a print out of your code.

b) Run your program and generate outputs for the cases shown below.

Case N $ \omega_1 $ k $ \omega_2 $
1 20 0.62831853
2 200 0.62831853 0 N/A
3 20 0.64402649 0 N/A
4 200 0.64402649 0 N/A
5 200 0.64402649 0.2 1.27234502
6 200 0.64402649 0.2 0.79168135




Question 2


Question 3


Back to ECE438, Fall 2010, Prof. Boutin

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman