$ x[n] = \begin{cases} 1, & n = 4 \\ 2, & n = 5 \\ 3, & n = 2 \\ 0, & \mbox{else} \end{cases} $
This is equivalent to
$ \begin{align} x[n] &= u[n-4] + 2u[n-5] + 3u[n-2] \\ X(z) &= \frac{z^{-4} + 2z^{-5} + 3z^{-2}}{1-z^{-1}}, |z|>1 \\ \end{align} $
Back to 438 main page