Revision as of 11:18, 15 September 2010 by Zhao148 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

How to obtain the Parseval's property in terms of f in hertz (from the formula in terms of $ \omega $)

To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ \mathcal{X}(\omega)=\mathcal{X}(2\pi f) \ $

$ \begin{align} \int_{-\infty}^{\infty} |x(t)|^2 dt &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(2\pi f)|^2 d2\pi f \\ &= \int_{-\infty}^{\infty} |\mathcal{X}(2\pi f)|^2 df \\ &= \int_{-\infty}^{\infty} |X(f)|^2 df \end{align} $

$ Since\ X(\alpha)=\mathcal{X}(2\pi \alpha) $


Back to Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett