Revision as of 19:30, 9 September 2010 by Zhao148 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Parseval's property

$ \mathcal{X}(\omega)=\mathcal{X}(2\pi f) \ $

$ \begin{align} \int_{-\infty}^{\infty} |x(t)|^2 dt &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(2\pi f)|^2 d2\pi f \\ &= \int_{-\infty}^{\infty} |\mathcal{X}(2\pi f)|^2 df \\ &= \int_{-\infty}^{\infty} |X(f)|^2 df \end{align} $

$ Since\ X(\alpha)=\mathcal{X}(2\pi \alpha) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood