Revision as of 09:52, 4 August 2010 by Jweigand (Talk | contribs)

The Erdös-Woods Problem

The Erdös-Woods problem is a surprisingly far reaching question about integers. I has implications for mathematical logic, ABC triples, elliptic curves, and can be generalized to (affine) schemes. This generalization provides links between number theory and Nevanlinna's value distribution theory in complex analysis. Connections between Nevanlinna theory and number theory have already been emphasized by Lang and Vojta in connections with Roth's theorem.

This completely independent connection suggests that the ABC conjecture could stated for the ring of entire functions. I seems plausible that it could even be proven by one of our friendly neighborhood Nevanlinna theorists.

UPDATE: Apparently ABC conjecture has already been proven for the field of meromorphic functions. This was part of a recent Séminaire Bourbaki, documented here.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva