Revision as of 05:50, 13 November 2009 by Bell (Talk | contribs)


Discussion area to prepare for Exam 2

Practice Problems for Exam 2

To find the radius of convergence of $ \sum_{n=0}^\infty (n!)z^{n!} $, you'll need to use the Ratio Test.

$ \frac{u_{n+1}}{u_n}=\frac{(n+1)!z^{(n+1)!}{n!z^{n!}=(n+1)z^{n\cdot n! $.

Ask yourself what that does as n goes to infinity in case |z|<1, =1, >1.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett