Revision as of 22:46, 5 November 2009 by Apanja (Talk | contribs)

TWO DIMENSIONAL SIGNALS


Some 2D signals are $ \ \delta\left (\mathit{x}, \mathit{y}\right ) $,Rect$ \left (\mathit{x}, \mathit{y}\right ) $,Sinc$ \left (\mathit{x}, \mathit{y}\right ) $.One important property of 2D functions is that they are separable,when they are a product of two 1D signals.They are of the form :

  $ \ \mathbf{f}\left (\mathit{x}, \mathit{y}\right )=\mathbf{g}\left (\mathit{x}\right )\mathbf{h}\left (\mathit{y}\right) $


Rect$ \left (\mathit{x}, \mathit{y}\right ) = \begin{cases} 1, & \mbox{if }|x|,|y|\mbox{ is less than 1} \\ 0, & \mbox{ }\mbox{ else} \end{cases} $


The rect 2D function looks like a box . Img8.jpg

The top view of the rect function looks like:Like a pixel

Img11.jpg

A fourier transform of a rect function is a product of 2 Sinc functions.The high'DC' components of the rect function lies in the origin of the image plot and on the fourier transform plot,those DC components should coincide with the center of the plot.But with a direct fft approach,the plot doesnt look like the expected fft graph.The DC components are found on the edges instead. Img9.jpg


The DC components are at the corners of the frequency space plot.With fftshift function the image can be pre and post processed to move the DC components in the center of the fourier transform.So that the FT plots looks like the expected plot. With fftshift,FT looks like: Img10.jpg

Another 2D function is Circ function.It is not separable into product of 2 1D functions Circ$ \left (\mathit{x}, \mathit{y}\right ) = \begin{cases} 1, & \mbox{if }\sqrt{x^2 +y^2} \mbox{ is less than 1} \\ 0, & \mbox{ }\mbox{ else} \end{cases} $

It looks like a cylinder in the 2D .The topview appears like a circle. Img12.jpgImg13.jpg Img14.jpgImg15.jpg

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett