Revision as of 08:00, 23 September 2009 by Ssaxena (Talk | contribs)

                                                 Inverse Z-transform

$ x[n]= \frac{1}{2\prod j} \oint_C X(z) z^{n-1} dz \ $

         $ = \sum_ {poles a_i of X(z) z^{n-1}} \  $ Residue $ X(z) z^{n-1} \  $
      
          $ = \sum_ {poles a_i of X(z) z^{n-1}} \  $ Coefficient of degree(-1) term  in the power expansion of $ X(z) z^{n-1} \  $ about $ a_i $

So inverting X(z) involves power series

$ f(x)= \sum_{n =-\infty}^{\infty} \frac {f^{n} x_0 (x-x_0)^{n}} {n!} \ $

$ \frac{1}{1-x} = \sum_{n =-\infty}^{\infty} x^{n} \ $ , geometric series when |x|< 1


Shortcut to computing equivalent to complex integration formula's

1) Write x(z) as a power series.

$ x(z)= \sum_{n =-\infty}^{\infty} C_n z^n \ $ ,series must converge for all z's in the ROC of x(z)

2) Observe that

$ x(z) = \sum_{n =-\infty}^{\infty} x[n] z^{-n} \ $

i.e.,

$ x(z) = \sum_{n =-\infty}^{\infty} x[-n] z^n \ $

3) By comparison

$ x[-n]= C_n \ $

or

$ x[n]= C_{-n} \ $

Example 1: $ x(z) = \frac{1}{1-z} \ $

Two possible ROC's Case 1: |z|< 1

$ x(z) = \sum_{n =\0}^{\infty} z^n \ $ , by the formula of goemetric series

   $  = \sum_{n =-\infty}^{\0} z^{-k}  \  $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang