Revision as of 04:30, 23 September 2009 by Ssaxena (Talk | contribs)

                                                  Inverse Z-transform
$  x[n] = \oint_C {X(Z)}{Z ^ (n-1)} , dZ \  $
where C is a closed counterwise countour inside the ROC of the Z- transform and around the origin.
            $  = \sum_{poles  a_i} ( X(Z) Z ^ (n-1))  Residue ( X(Z) Z ^ (n-1)) \  $
            $  = \sum_{poles  a_i} $

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics