Revision as of 17:45, 22 September 2009 by Rrego (Talk | contribs)

Assume a function $ x(t) $.

We wish to covert a signal sampled at $ T_1 $ one sampled at $ T_2 $ without having to reconstruct the original $ x(t) $ and then resampling at a new rate.

There are two cases here.

1. $ T_2 $ is a multiple of $ T_1 $

2. $ T_2 $ is a divider of $ T_1 $

In this discussion, we will look at the first case, ie. where $ T_2 $ is a multiple of $ T_1 $.

Conversion can be accomplished by down-sampling $ x_1[n] $

$ x_1[n] \longrightarrow D = \frac{T_2}{T_1} \longrightarrow x_2[n] $

$ x_2[n] = x_1[Dn] $

where $ D = \frac{T_2}{T_1} $

We observe that this is the same as doing $ x_2[n] = x(T_2n) $

This in Fourier Domain becomes

$ F(x_2[n]) = F(x_1[Dn]) $

$ X_2(\omega) = \sum_{n=-\infty}^{\infty} x_1[Dn] e^{-j \omega n} $

let $ m = Dn $

$ X_2(\omega) = \sum_{m=-\infty}^{\infty} x_1[m] e^{-j \omega \frac{m}{D}} $

where m is a multiple of D

Now, we can introduce a function $ s_D[m] $ such that

$ s_D[m] = \begin{cases} 1, & \mbox{if }m\mbox{ multiple of }D\\ 0, & \mbox{else } \end{cases} $

The Fourier series of this function can be represented as

$ S_D[m] = \frac{1}{D} \sum_{k = 0}^{D-1} (e^{j \frac{2 \pi}{D} m})^k $

and therefore we get

$ X_2(\omega) = \sum_{m = -\infty}^{\infty} S_D[m] e^{-j \omega \frac{m}{D}} $

$ X_2(\omega) = \sum_{m = -\infty}^{\infty} \frac{1}{D}\sum_{k = 0}^{D-1} e^{j k \frac{2 \pi}{D} m} x_1[m] e^{-j \omega \frac{m}{D}} $

$ X_2(\omega) = \frac{1}{D} \sum_{k=0}^{D-1} \sum_{m=-\infty}^{\infty} x_1[m] e^{-j m (\frac{\omega - 2 \pi k}{D})} $

And since $ \sum_{m=-\infty}^{\infty} x_1[m] e^{-j m (\frac{\omega - 2 \pi k}{D})} = X_1(\frac{\omega - 2 \pi k}{D}) $

Therefore, $ X_2(\omega) = \frac{1}{D} \sum_{k=0}^{D-1} X_1(\frac{\omega - 2 \pi k}{D}) $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison