Revision as of 02:10, 23 July 2009 by Jfmartin (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

CTFS Time Shifting Property

If x(t) has CTFS coefficients $ a_k $ and y(t) has CTFS coefficients $ b_k $,

then the Fourier series coefficients $ b_k $ of the resulting signal y(t) = x(t - $ t_0 $)

may be expressed as $ b_k = \left ( \frac{1}{T} \right ) \int \limits_T x \left ( t - t_0 \right ) e^{-j k w_0 t}\, dt $.

Letting $ \tau $ = t - $ t_0 $ in the new integral and noting that the new variable $ \tau $ will

also range over an interval of duration T, we obtain:

$ \qquad \left ( \frac{1}{T} \right ) \int \limits_T x \left ( \tau \right ) e^{-j k w_0 \left ( \tau + t_0 \right )}\, d\tau = e^{-j k w_0 t_0} \left ( \frac{1}{T} \right ) \int \limits_T x \left ( \tau \right ) e^{-j k w_0 \tau}\, d\tau $

$ = e^{-j k w_0 t_0} a_k = e^{-j k \left ( 2\pi / T \right ) t_0} a_k $,

where $ a_k $ is the $ k^{th} $ Fourier series coefficient of x(t). That is, if

$ x \left ( t \right ) \Longleftrightarrow^{\mathit{FS}} a_k $, then

$ x \left ( t - t_0 \right ) \Longleftrightarrow^{\mathit{FS}} e^{-j k w_0 t_0} a_k = e^{-j k \left ( 2\pi / T \right ) t_0} a_k $.

One consequence of this property is that, when a periodic signal is shifted in time, the

$ \mathit{magnitudes} $ of its Fourier series coefficients remain unaltered.

That is, $ | b_k | = | a_k | $.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn