Revision as of 03:43, 9 July 2009 by Spulliam (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Proving that the Continuous-Time Fourier Transform demonstrates linearity

Property:

F(a x(t) + b y(t)) = a X(jw) + b Y(jw)


Derivation:

F(a x(t) + b y(t)) = $ \int\limits_{-\infty}^{\infty}[a x(t)+b y(t)] e^{(-jwt)}dt $

F(a x(t) + b y(t)) = $ \int\limits_{-\infty}^{\infty}a x(t) e^{(jwt)}dt + \int\limits_{-\infty}^{\infty}b y(t) e^{(-jwt)}dt $

F(a x(t) + b y(t)) = $ a \int\limits_{-\infty}^{\infty}x(t) e^{(jwt)}dt + b \int\limits_{-\infty}^{\infty}y(t) e^{(-jwt)}dt $

F(a x(t) + b y(t)) = a X(jw) + b Y(jw) (definition of linearity)

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva