Revision as of 03:34, 9 July 2009 by Wmulflur (Talk | contribs)

Conjugation Property and Conjugate Symmetry

The conjugation property states that  if the $ \mathcal{F} $ of x(t) will be equal to X(jw) 
then,
the $ \mathcal{F} $ of x*(t) will be equal to X*(-jw)

This property follows from the evaluation of the complex conjugate of
 $ X^* (jw)=[\int\limits_{-\infty}^{\infty}x(t)e^{(-\jmath wt)}dt]^* $ 
         
 $ X^* (jw)=\int\limits_{-\infty}^{\infty}x^* (t)e^{(\jmath wt)}dt $

Replacing w with -w,  
 $ X^* (-jw)=\int\limits_{-\infty}^{\infty}x^* (t)e^{(-\jmath wt)}dt $ 
  (The right hand side of this equation is the Fourier transform analysis equation for x*(t)) 

The conjugation property shows that if x(t) is real, then X(jw) has conjugate symmetry 
 $  X(-\jmath w) = X^* (\jmath w) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett