Revision as of 06:53, 8 July 2009 by Rrayburn (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Linearity - Property of Continuous Time Fourier Transform

Linearity States that the FT of {a*x(t)+b*y(t)} will be equal to {a*X(w)+b*Y(w)} if the signal is truly linear.

General Derivation: $ FT=\int\limits_{-\infty}^{\infty}x(t)e^{(-\jmath wt)}dt $

  • If z(t) = {a*x(t)+b*y(t)}, then the FT is $ Z(w)=\int\limits_{-\infty}^{\infty}(a*x(t)+b*y(t))e^{(-\jmath wt)}dt $
    • $ Z(w)=\int\limits_{-\infty}^{\infty}a*x(t)e^{(-\jmath wt)}dt+\int\limits_{-\infty}^{\infty}b*y(t)e^{(-\jmath wt)}dt $
      • $ Z(w)=a\int\limits_{-\infty}^{\infty}x(t)e^{(-\jmath wt)}dt+b\int\limits_{-\infty}^{\infty}y(t)e^{(-\jmath wt)}dt $
        • Since $ X(w)=\int\limits_{-\infty}^{\infty}x(t)e^{(-\jmath wt)}dt $ (Same for Y(w))
          • Therefore, $ Z(w)=a*X(w)+b*Y(w) $

Example:

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics