Revision as of 08:10, 5 July 2009 by Jaboswel (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Let $ f $ be a non-negative measurable function on $ \mathbb{R} $. Prove that if

$ \sum_{n=-\infty}^{\infty} f(x+n) $

is integrable, then $ f=0 $ a.e.

Proof:

Set $ f_n = \sum_{m=-n}^n f(x+n) $

$ f_n $ are $ L^1 $ since they are measurable and since $ f_n \leq \sum_{n=-\infty}^{\infty} f(x+n) $

Also $ f_n \longrightarrow \sum_{n=-\infty}^{\infty} f(x+n) $

So by Dominated Convergence,

$ \sum_{n=-\infty}^{\infty} \int_{\mathbb{R}} f = lim \int_{\mathbb{R}} f_n =\int_{\mathbb{R}} \sum_{n=-\infty}^{\infty} f(x+n) < \infty $

So $ \int_{\mathbb{R}} f =0 $.

Thus, since $ f \geq 0 $, and $ \int_{\mathbb{R}} f =0 $ , $ f=0 $ a.e.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn