Revision as of 13:42, 24 October 2008 by Jmason (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

$ I = \int_0^{\frac{\pi}{2}} \frac{\sin^n x}{\sin^n x + \cos^n x}dx $

$ x = \frac{\pi}{2} - u $

$ dx = -du $

$ I = -\int^0_{\frac{\pi}{2}} \frac{\sin^n (\frac{\pi}{2} - u)}{\sin^n (\frac{\pi}{2}-u) + \cos^n (\frac{\pi}{2}-u)}du = \int_0^{\frac{\pi}{2}} \frac{\sin^n (\frac{\pi}{2} - u)}{\sin^n (\frac{\pi}{2}-u) + \cos^n (\frac{\pi}{2}-u)}du = \int_0^{\frac{\pi}{2}} \frac{\cos^n u}{\cos^n u + \sin^n u}du $

$ 2I = \int_0^{\frac{\pi}{2}} \frac{\sin^n x}{\sin^n x + \cos^n x}dx + \int_0^{\frac{\pi}{2}} \frac{\cos^n x}{\sin^n x + \cos^n x}dx = \int_0^{\frac{\pi}{2}} \frac{\sin^n x + \cos^n x}{\sin^n x + \cos^n x}dx = \int_0^{\frac{\pi}{2}} dx = \frac{\pi}{2} $

$ I = \frac{\pi}{4} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn