Revision as of 06:31, 24 July 2008 by Pweigel (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

$ \text{Given: f is uniformly continuous on } \mathbb{R}, \ h(x) = \int_{x-1}^{x+1} f(t)dt $

$ \text{Show: h is uniformly continuous on } \mathbb{R} $


$ \text{Proof: Let } \epsilon>0, \ \delta \text{ be the radius of uniform continuity of f given } \epsilon. $

$ \Rightarrow h(x+\delta) = \int_{x-1}^{x+1} f(t-\delta)dt \text{ after a change of variables.} $

$ \Rightarrow |h(x+\delta)-h(x)| \leq \int_{x-1}^{x+1} |f(t)-f(t-\delta)|dt < 2\epsilon $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett