Revision as of 15:04, 22 July 2008 by Wardbc (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

2)

Pick a partition P of [a,b]

$ a=x_0<x_1<...<x_n=b $

Pick $ c_i \in (x_0, x_1) \ i=1,...,n. $


Define $ c_{n+1}=b $ and $ c_0=a $.

Then $ \sum_{i=1}^n \phi(c_i)(f(x_i)-f(x_{i-1})) = \sum_{i=1}^n \phi(c_i)f(x_i)-\sum_{i=1}^n \phi(c_i)f(x_{i-1}) $

$ = \phi(c_n)f(x_n)-\phi(c_1)f(x_0) + \sum_{i=1}^{n-1} (\phi(c_i)-\phi(c_{i+1}))f(x_i) $

$ = - f(b)\phi(b) + f(a)\phi(a) - \sum_{i=0}^{n} (\phi(c_{i+1})-\phi(c_{i}))f(x_i) $.


(by adding and subtracting $ f(b)\phi(b) $ and $ f(a)\phi(a) $.

Taking the limit on both sides as $ |P| \rightarrow 0 $ gives us the claim.



--Wardbc 15:57, 22 July 2008 (EDT)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett