Revision as of 09:03, 9 July 2008 by Bbartle (Talk)

Let $ \phi_n = \sup\{f_1,...,f_n\} $.

Let $ \phi = \lim_{n\rightarrow\infty}\phi_n $.

$ \phi_n $ is monotone increasing so the monotone convergence theorem implies $ \int{\phi d\mu} = \lim_{n\rightarrow\infty}\int{\phi_n d\mu} $.

Since $ \int{\phi_n d\mu}\le M $, we have $ \int{\phi d\mu} \le \lim_{n\rightarrow\infty}M = M $.

Note that $ f_k \le \phi, \forall k $.

Now by the Dominated Convergence Theorem, $ \lim_{n\rightarrow\infty}\int{f_n d\mu}=\int{\lim_{n\rightarrow\infty}f_n d\mu} $

Since $ \lim_{n\rightarrow\infty}f_n = 0 $ a.e., $ \lim_{n\rightarrow\infty}\int{f_n d\mu}=0 $

--Bbartle 10:03, 9 July 2008 (EDT)

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang