Revision as of 09:41, 13 October 2008 by Bell (Talk)

Just in case so you don't have to look them up in your book or whatever. And so I can learn how to use Latex!

Hyperbolic Functions

  • $ \sinh(x) = \frac{e^x - e^{-x}}{2} $
  • $ \cosh(x) = \frac{e^x + e^{-x}}{2} $
  • $ \tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} $
  • $ \coth(x) = \frac{\cosh(x)}{\sinh(x)} = \frac{{e^x + e^{-x}}}{{e^x - e^{-x}}} $
  • $ \text{sech}(x) = \frac{1}{\cosh(x)} = \frac{2}{{e^x + e^{-x}}} $
  • $ \text{csch}(x) = \frac{1}{\sinh(x)} = \frac{2}{e^x - e^{-x}} $

Idryg 20:10, 11 October 2008 (UTC)

Basic Integration Formulas

$ \int\frac{du}{\sqrt{a^2-u^2}}=\sin^{-1}\frac{u}{a} + C $

$ \frac{\pi}{4}= 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots $

$ = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{2n-1} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood